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1.  INTRODUCTION 

The difference between the gravity-, wind-, and drag-corrected aim point 
and where a projectile actually hits the target is referred to as projectile jump. 
Projectile jump varies from round to round, but, in general, roughly two-thirds 
of the rounds will hit the target within one standard deviation (defined as the 
ammunition dispersion) of the center of (shot) impacts, COIs, for a given lot of 
ammunition. However, the COI will vary from tube to tube, mount to mount, 
and occasion to occasion. In a test with early production 120-mm M256 tubes 

(Walbert and Petty 1985), the COIs from six different tank-tube combinations 
were found to vary by 3 mils (roughly 3 m at 1,000 m) in azimuth and 
elevation. It is likely that production M256 tubes today would show a smaller 

variation, maybe half (Webb 1996), nonetheless, a large source of error. 

It is difficult to discern what fraction of this variation is due to barrel 
differences alone, since changing tubes alters both the mounting conditions 
and the occasion. Some indication of barrel dependence was given in the 
"rotated tube" test of Haug, Petty, and Walbert (1988). They rotated a 
(preproduction) 120-mm M256 barrel (ser. no. 84) through 90° increments and 
recorded the COI for 10-round groups at each orientation, Figure 1. 
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Figure 1. Centers of impact for 10-round groups fired through M256 
(ser. no. 84) in rotated tube test. 



Each rotation of the barrel in the test of Figure 1 required the equivalent 
of a mount change, necessitating at least 1 day between firings. In spite of the 
mount and occasion changes, it is quite obvious from the test results that the 
shift in group centers is rotationally symmetric, with the COIs spaced about 
90° apart on roughly a 1-mil radius.* It can thus be argued that rotation of the 
barrel's centerline is the cause of the COI rotation. 

Some indication of the sensitivity of projectile jump (and hence COI) to 
centerline curvature may be gained by examining the rotated tube test on a 
component basis. The horizontal and vertical centerline components of tube 84 
are displayed in Figure 2, corresponding to the COI at 0° in Figure 1. Rotating 
the barrel in 90° increments changes the horizontal and vertical components 
into the vertical and horizontal components, respectively, with a sign change, 
where appropriate, to remain consistent with the gunner's coordinate system 
(i.e., left—negative, up—positive). For example, the negative of the vertical 
centerline at 0° becomes the horizontal centerline at 270°, Figure 3. 

As can be seen in Figure 3, the horizontal centerlines at 0° and 270° have 
some features in common. Their profiles are sinusoidal in nature, resembling 
roughly 1.5 cycles of a sine wave, with the "wavelength" of each nearly the 
same; and, as viewed from the chamber forward, both centerline components 
move right (positive deflection) and left (negative deflection) in the same 
progression. However, the two sinusoids differ from each other in being slightly 
out of phase, resulting in slightly different muzzle exit conditions; and, one 
profile is biased toward the right (i.e., positive centerline excursions are larger 
than negative ones), whereas, the other is biased toward the left. 

* Even though the prefiring aim point was at the horizontal and vertical origin for each 
orientation in Figure 1, the center of COI symmetry appears to be shifted vertically about 
0.5 mil. This shift in the center of symmetry above the prefiring aim point might be caused by 
a positive shift in muzzle pointing angle at the time of shot exit. Such a change in muzzle angle 
during inbore travel could result from the upward barrel rotation caused by the torquing action 
of the center of gravity offset in the recoiling breech assembly. 
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Figure 2. Horizontal and vertical centerline profiles of M256 
fser.no. 84) in rotated tube test fat 0^ orientation). 

How will the similarities and differences noted in Figure 3 influence the 
horizontal fall of shot? When the near 1.5-cycle horizontal centerlines are 
reversed, quite different changes in the COI occur. For example, in going from 
0° to 180°, the horizontal component of the COI in Figure 1 changes from 
roughly 0.4 mil at 0° to -0.1 mil at 180°, a 0.5-mil change. However, in going 
from 270° to 90°, the change in the horizontal COI is from -1.3 mils at 270° to 
1.5 mils at 90°, nearly a 3-mil change. Interpretation of these results depends 
on how much the mount and occasion change affects the COI change with each 
rotation. For example, if we assume that the mount and occasion changes do 
not appreciably affect the COI, then the large difference between COI changes, 
viz., 3 mil vs. 0.5 mil, implies that projectile jump is sensitive to the magnitude 
and location of each oscillation, even if the number of oscillations is nearly 
identical (Figure 3). On the other hand, if the mount and occasion change can 
significantly influence the COI, then specific inferences about the effect of 
curvature on fall of shot are difficult to ascertain from the rotated tube test. 



The significance of the COI-centerline test described here is that the 
centerline can be changed without remounting the barrel, thus, there is no 
doubt that the centerline is the sole contributor to the COI change. 
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Figure 3.  Comparison of horizontal centerline profiles atO° and 270° 
orientations in rotated tube test. 

2. CONTROLLING THE CENTERLINE 

A series of heating pads was adhered to the outer wall of an M256 barrel 
(ser. no. 2971). A small hole in the center of each pad accommodated the 
placement of a thermocouple used to measure the barrel temperature. The 
temperature of the barrel under each pad could be stabilized by automatic or 
manual control of the heating pad's on-off switch. Hence, it was possible to 
control cross-barrel temperature differences (CBTDs), and thus control 

differential thermal expansion across the tube, so that the barrel centerline 
could be changed as needed. A detailed description of the experimental setup 
and validation of the thermal bend control can be found in Bundy (1996). 



This being the first firing test of a thermally controlled barrel, it was 
deemed sensible to limit the analysis to the horizontal plane only, where fewer 
factors influence gun dynamics. That is, in the vertical plane, the 
unidirectional effects of gravity on the barrel and projectile add complexity to 
the analysis of gun dynamics. Furthermore, it is known (e.g., Erline and Kregel 
1988) that the effects of the breech center-of-gravity (eg) offset will overshadow 

the effects of centerline curvature on vertical plane gun dynamics. 

To further simplify the experiment, only a simple bow shape, or half-sine 

wave curvature, to the left and right, as well as a near-straight centerline were 
chosen for analysis. It should be noted, however, that some (Schmidt, et al. 
1990) think barrels with multiple changes in curvature, like that shown in 
Figure 2, produce greater jump than simple bow-shaped barrels. 

The magnitude of the bow shape was varied twice in each direction to 
give a total of five trial cases, which are distinguished as bow left, bow right, 
large bow left, large bow right, and near straight in the horizontal centerline 
plots of Figure 4. How do these five trial cases relate to the natural curvatures 
found in the general population of tube centerlines? In the dispersion study of 
Wilkerson (1995), 20 M256 tubes were examined. Of these 20, 15 (75%) had a 
simple bow shape in either the horizontal or vertical plane, much like "2971." 
Ten of the 20 barrels (50%) had bow shapes that were greater in magnitude 
than that of 2971, but smaller in magnitude than the bow-left and bow-right 
curvatures in Fig. 3. Five of the 20 (25%) had bows that were as large as the 
bow-left/right curvatures, but smaller than the large bow-left/right curvatures. 
As a final note, a simple bow shape is the first natural mode of vibration for a 
barrel; hence, such a shape may dominate the centerline curvature in barrels 
firing on the move over "bumpy" terrain. 

Bear in mind, the centerline plots of Figure 4 are not based on actual 
measurements, which are not possible using an optically based centerline 
measuring instrument in an above-ambient temperature bore. Rather, they are 
based on theoretical predictions using the thermal bend model of Bundy 
(1993). Past testing has shown (Bundy 1996), however, that there is good 
agreement between the thermal bend model and obtainable experimental 

measurements. 
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Figure 4. Manufactured and heating-pad-induced horizontal centerline 
curvatures prior to firing M256 fser. no. 2971). 

There are several centerline plots drawn in Figure 4 for each of the five 
general curvature cases. For example, there are five distinctly different plots 
for the bow-left case. Each plot represents the centerline profile when a round 
was fired. The small variation in plots for the same case attests to the fact that 
it was not possible to maintain exact control over the cross-barrel temperature 
differences (CBTDs), which affect thermal bend. In actuality, there were six 
rounds fired for the bow-left case, with two plots overlaying each other. 
However, regardless of the number of plots that can be distinguished, there 
were at least four rounds fired for each general curvature case. 

The ambient temperature during the 5-day testing period never exceeded 
20° C. The barrel temperature would, of course, rise above ambient after firing. 
To maintain a consistent set of starting conditions for each firing, all heating 

pads were set to maintain a minimum barrel temperature of 25° C. A large- 



volume air pump was used to blow ambient air through the barrel from the 
breech to the muzzle after each round; this expedited the return of the barrel to 
the 25° C minimum starting condition. Once the starting condition was 
reached, the blower was removed and manual control of specific heating pads 
was used to raise the barrel temperature above the 25° C minimum, in 
accordance with the temperature distribution required to create a given 
centerline profile. For example, the bow-left profile was created by raising three 
consecutive heating pads on the gunner's left of the barrel to 31° C, 39° C, and 
31° C, as indicated in the schematic of Figure 5, while all other heating pads 
maintained the 25° C minimum barrel temperature. Actually, Figure 5 plots 
the right-minus-left CBTDs, rather than the absolute temperatures, since it is 

temperature difference that determines the amount of thermal bend that will 

take place. 
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Figure 5. CBTD profile needed to induce bow-left configuration of Figure 4. 



3.  MEASURING THE COI 

In total, 29 rounds of same-lot M865 target practice, cone-stabilized, 
discarding-sabot, training (TPCSDS-T) ammunition were used in this test. To 
reduce the dependence of occasion-to-occasion differences on the results, the 

firings were sequenced so that a round was fired with the centerline bowed to 
the left; then a near-straight centerline was fired; and then a round was fired 
with the centerline bowed to the right. This left-straight-right pattern was 
repeated, with, on average, a round being fired every 30-60 min.  (Although the 

centerline could be changed in 5-10 min, a period of 20-30 min was required 
to bring the barrel back down to the 25° C starting condition, using the forced 

air blower.) Six test rounds were fired per day. 

A spotter round was fired at the beginning of each day to "set" the gun, 

which biases clearances and tolerances in the gun-mount system in one 
direction. These biases are, for the most part, maintained during the course of 
subsequent firings but can "relax" if the period between rounds is excessive 
(e.g. 24 hours). To gauge the relative motion of the mount, and therefore the 
breech pointing angle, a 20-power telescope (a so-called Wye scope) was placed 
in a special cradle that was rigidly attached to the outside wall of the recoil 
cylinder. The Wye scope was used to read a grid board located 103 m 
downrange. The accuracy of this reading was considered to be 0.01 mil. 
Figure 6 shows, as implicated, that the largest change in breech angle occurs 
after the spotter rounds. Thereafter, the mount remained fairly stable. This 
mount, located at the U.S. Army Research Laboratory's Transonic Range, held 
tube 2971 in an Ml Al recoil that was attached to an Aberdeen Proving Ground 
(APG) "yoke" through an APG "adapter" plate. The APG yoke was affixed to the 
recoil system (equilibrator, trunnions, and pedestal) of an 8-in MHO howitzer. 
However, the recoil system was not vehicle mounted; rather, it was rigidly 
bolted to a concrete ground slab. Based on historical Wye scope data (from 
past firing tests), this Ml 10 "pedestal mount" was as stable as the much 
heavier adjustable span mounts used by the U.S. Army Aberdeen Test Center 

at their "main front" firing sites. 

The pointing angle of the muzzle end of the gun could be changed by 

altering the breech angle, or it could be changed by thermal distortion of the 
barrel between the breech and the muzzle. The muzzle angle was measured 

8 



using a so-called APG muzzle scope. The reading accuracy of the APG scope is 

considered to be 0.05-0.10 mil. 
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Figure 6. Change in horizontal breech pointing angle during 5-dav 
firing period. 

In addition to the baseline breech scope measurement, a baseline muzzle 
scope reading was taken before each day's firings. In fact, prior to taking these 
baseline measurements, the azimuth and elevation of the gun mount was 
adjusted so that the collimated APG scope was pointing at a painted cross on a 
downrange target cloth (super-elevation to compensate for gravity drop was 
then added). As discussed, however, firing the pretest spotter round would 
normally move the mount so that the gravity-corrected pointing angle of the 
muzzle scope after the spotter round, and before the first test round, was not 
usually directed exactly at the target cross. Rather than move the mount again 
(to align the muzzle angle with the cross), and risk having to fire another 
spotter round to ensure the mount was once again set in place, the post- 
spotter-round readings of the breech and muzzle scopes were taken as the 

pretest-round pointing angles. 



After the CBTD pattern needed to create a specific curvature (one of the 

five general shapes shown in Figure 4) was established, a check of the breech 
and muzzle pointing angle was made. This check helped ensure that the 
proper curvature was indeed present prior to firing a round. For example, 
Figure 7 shows a typical day's record (day 3) of the muzzle-minus-breech 
pointing angles prior to firing (zero represents the unheated barrel). It can be 
seen that the measurements were close to those expected from thermal bend 
modeling for each of the three configurations. The end-to-end thermal bend for 

the bow-left and bow-right cases are symmetric about the near-straight case, 

as expected. However, the near-straight case required a small thermal bend to 

the gunner's left in order to compensate for "2971's" small natural bend to the 

right (see Figure 4). This resulted in the small positive offset seen in Figure 7 

for the near-straight case. 
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After firing each round, the target impact location was marked, and later 
measured relative to the initial (prespotter) aim point. The horizontal distance 
from the initial aim point, divided by the distance to the target (953 m), was 
used to convert the shot impact location into an angular deviation (in mils) off 
the original "line of fire." Having determined the prefiring muzzle pointing angle 
(relative to the initial aim point) and the shot impact angle for each test round, 
the two angles were differenced to establish the horizontal jump angle for each 
round. Finally, the mean horizontal jump angle was computed and defined as 
the COI for the group of rounds associated with each specific barrel curvature. 

4.  COMPARISON OF THE COIs WITH CENTERLINE CURVATURES 

The first comparison is between the COIs and centerline curvatures of 
the bow-left, bow-right, and near-straight configurations. An illustration of the 
results is displayed in Figure 8. For the bow-left case, the horizontal COI falls 
0.30 mil to the left of the muzzle pointing angle. Whereas, for the bow-right 
case, the horizontal COI falls only 0.02 mil to the left of the aim point. For the 
near-straight barrel, the COI lies in the middle of the bow-left and right result, 
viz., 0.14 mil to the left of the aim point. It can be seen from the schematic of 
Figure 8 that, relative to the near-straight case, inducing a left bow will move 
the muzzle to the right and the shot impacts to the left. Conversely, forming a 
right bow will move the muzzle to the left and the shot impacts to the right of 
the near-straight case. 

When the barrel is distorted into the large bow-left configuration, the COI 
lies, surprisingly, at virtually the same location as the smaller bow-left firings— 
in this case, 0.29 mil to the left of the aim point, Figure 9. Similarly, the COI 
for the large bow-right firings lies at the same location as the smaller bow-right 
firings, viz., 0.02 mil to the left of the aim point. 

11 
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Figure 8. Illustration of M865 COI vs. centerline curvature fin the 
horizontal plane) for three of five bent barrel cases. 

The results for all five firing configurations are summarized in Table 1. It 
should be noted that on day 1 only four of six test rounds were considered 
"good" data rounds, with no entries (Table 1) for the bow-right configuration. 

The exclusion of the bow-right trials was based on the fact that the CBTD 

patterns for these two rounds were not deemed sufficiently close to the bow- 
right configuration. Such a problem did not occur again during the course of 
firing, because control of the CBTDs was changed from automatic to manual 
after the first day. This provided better control over the repeatability of 
centerline curvatures for all configurations. 

12 
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Table 1. Horizontal Jump Values for Five Barrel Curvatures 

M865 Impact Anj *le Minus Muzzle Angle (mils) 
Large Bow 
Left 

Bow Left Near 
Straight 

Bow Right Large Bow 
Right 

Day 1 -0.285 -0.308 
-0.347 -0.204 

Day 2 -0.164 -0.297 -0.049 
-0.534 -0.067 -0.366 

Day 3 -0.177 -0.115 +0.180 
-0.270 +0.130 +0.156 

Day 4 -0.345 +0.258 
-0.258 -0.141 
-0.366 +0.179 

Day 5 -0.093 -0.136 
-0.262 -0.236 
-0.422 

Avg. Jump -0.291 -0.296 -0.143 -0.020 -0.015 
Std. Dev. 0.116 0.135 0.165 0.252 0.219 
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Though perhaps surprising to some, the observation that a centerline 
bowed to the left or right (with muzzle angle moved right or left, respectively) 
shoots rounds to the left or right, respectively, relative to a straighter 
centerline, has occurred before. In 1987, for example, during testing of a 
candidate thermal shroud for the M256 cannon (Bundy 1987), uneven cooling 
(due to a design failure in the shroud) caused the barrel to undergo a thermal 
bend to the gunner's left (bow left). As this occurred, the fall of shot also 
moved to the gunner's left. The correlation coefficient (r-value) between the 
bow-left thermal bend and the shift left in jump was highly significant, 

I r I = 0.76. A similar result occurred in a more recent test with a 25-mm chain 
gun (Garner et al. 1995); it was found that thermal distortion induced by 
uneven firing heat input caused the barrel to bow to the right and the shot 

impacts to move to the right. 

It is worth noting that the 0.18-mil pooled standard deviation across the 
five groups of Table 1 is significantly lower (P<0.005) than the 0.29-mil 
horizontal dispersion obtained from the lot acceptance test (LAT), for this 
particular lot of M865s." However, this is probably to be expected, since in 
this test, unlike the LAT, the centerline curvature, and hence gun dynamics, is 
virtually the same for every round fired in each group. For this reason, the 
pooled standard deviation from this test is probably more representative of the 
"true" horizontal dispersion than that obtained from the LAT. Moreover, it 
might be inferred from such a large decrease in dispersion that if barrel 

curvature was unwavering from round to round it could significantly improve 

the hit probability at longer ranges. 

5.  MODELING THE EFFECT 

In an effort to gain an understanding of the results, a gun dynamics 

model—Rascal—was employed to model the projectile-barrel interaction for the 
five configurations. Operation of the Rascal code is described by Erline, Kregel, 

and Pantano (1990). Briefly, five input files are required: one file describes the 
projectile physical properties, one the interior ballistics for the projectile, one 
the barrel dimensions, one the bore centerline, and one the breech and mount 

** LAT data provided by Albert Pomey, U.S. Army Armor School. Fort Knox, KY; statistical 
analysis provided by David Webb, US Army Research Laboratory, APG, MD. 
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parameters. Among its outputs, Rascal provides the displacement of the 
projectile eg above or below the original (prefiring) bore axis. Furthermore, 
Rascal gives (indirectly) the transverse velocity component of the projectile's eg 
relative to the original bore axis, and (directly) the angle and angular rate at 
which the projectile exits the muzzle. 

The primary factors that influence projectile jump are accounted for in 
Equation 1, obtained, for example, from Lijewski (1982), for a slowly rolling 

symmetric missile. 

5 S I F 
Horizontal Jump = -± + -^ - —j^- -=-*- ä + Er   , (1) 

S„        v„       m d v„ CMa 

where s± is the horizontal (transverse) distance of the projectile eg off the 
original line of fire as it enters free flight; s± is the horizontal velocity of the eg 
as it enters free flight; S|( is the distance from the muzzle to the target; v„ is the 

projectile's (longitudinal) muzzle velocity; I± is the moment of inertia about the 

horizontal axis; m is the mass of the projectile; d is the diameter of the 

projectile; CF is the lift force coefficient; CM is the restoring moment coefficient; 

ä is the time rate of change of the horizontal angle of attack as it enters free 
flight; and Er is the horizontal jump due to the Earth's rotation beneath the 

projectile (i.e., the Coriolis force). 

The first two terms in Equation 1 are affected by the gun motion at shot 
exit and the sabot separation dynamics. The third term is the only term which 
involves aerodynamic forces and moments; it is the aerodynamic jump 
component of the total jump. 

For this test (range location, distance, and type of round fired, M865), 
S|( = 953 m, v„ = 1704 m/s, I± = 0.033 kg-m2, m = 2.72 kg, d = 0.038 m, 
CF =9.81, CM =-18, and Er = 0.03 mils (to the gunner's right). 

a a 

Although s± is the horizontal distance off the line of fire after the 

projectile has transitioned through the sabot discard regime, the effects of 
sabot discard were not measured in this test. Thus, it is assumed that s± is the 
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value at muzzle exit, obtained from Rascal, which is so small as to be negligible 
in comparison to S|r Likewise, s± and a were not measured after sabot discard 

and are assumed to be the values at the muzzle, again, obtained from Rascal. 
Not knowing the effects of sabot discard on these variables is a weakness of the 
current analysis. 

Without further elaboration, Equation 1 was used to predict the projectile 
jump outcomes listed in Table 2. Also shown in Table 2, for direct comparison, 
is a repetition of the measured mean jump values (COIs) given in Table 1. It is 
quite obvious that the predictions do not agree with the measurements. 

Table 2. Rascal Jump Predictions for Five Barrel Curvatures 

M865 Avera ge Horizontal Jump (COI) 
Large Bow 
Left 

Bow Left Near 
Straight 

Bow Right Large Bow 
Right 

Rascal 
Predicted 
COI 

+1.20 +0.838 +0.023 -0.761 -1.03 

Measured 

COI 
-0.291 -0.296 -0.143 -0.020 -0.015 

In general, the Rascal predictions call for jump to result in a projectile 
deflection to the gunner's right of the aim point, if the muzzle is bowed left, and 
a deflection to the left of the aim point, if the barrel is bowed right. The 
magnitude of the deflection is predicted to be nearly proportional to the 
magnitude of the bow. A small deflection to the right of center is predicted for 
the nearly straight tube. 

On the other hand, all observed projectile deflections were to the left of 
the aim point. Furthermore, the magnitude of the deflections were far less 
than that predicted by Rascal, and, there was no connection between the 
magnitude of the barrel bend and the magnitude of the observed deflection. 

It should be mentioned that a small torque, due to the slight offset (to the 
gunner's right) in the breech's horizontal eg relative to the bore axis was 
included in the Rascal computations of Table 2. However, this torque produced 
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only a minor deflection of the projectile to the gunner's left, -0.03 mils for all 
five cases, not enough to bring the predictions into agreement with the 

observations. 
Even though the effects of sabot discard are not included in the 

calculations, it is not likely that they would remove the large discrepancy 
between the Rascal predictions and the measurements in Table 2. Other 
known deficiencies in the Rascal model would include: 1) the spring constants, 
which model the interaction between the projectile and the barrel, are based on 
static measurements and do not include the compressive effects of longitudinal 
acceleration; 2) Rascal considers the barrel support points to be the same in 

both the horizontal and vertical directions, which is not a physically accurate 
description; and 3) the model does not include the effects of "gun whip" due to 
recoil of a bowed barrel, but this is probably a relatively small term. 

6.  CONCLUSIONS 

Controlled changes of the bore centerline with heating pads provide a 
means to isolate the effects of tube-to-tube variation on the fall of shot without 
entailing a mount or an occasion change. Five simple, nevertheless common, 
centerline profiles were examined. The shape changes were all made in the 
horizontal plane to avoid the complexities introduced by gravity and the large 
vertical eg offset of the breech. 

It was found that same-lot M865 rounds fired through a nearly straight 
tube were grouped about a COI that was on the gunner's left of the prefiring 
muzzle aim point (-0.14 mil). When the bore centerline had a bow to the left, 
and the muzzle pointed to the right, the COI was to the left of the near-straight 
case (-0.30 mil from the aim point). When the centerline was bowed to the 
right, and the muzzle pointed to the left, the COI was to the right of the near- 
straight case (-0.02 mil from the aim point). However, a change in magnitude 

of the left and right bows did not change the COI. Overall, the average COI for 
all five cases was about -0.15 mil. 

Assuming the Ml Al fleet has roughly the same number of right-bowed 
barrels as left, we might expect the fleet COI for M865s, which is +0.15 mil, 
would be close to our "five-barrel" average, -0.15 mil. The difference begs the 
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question of whether the mount used in our test biased the COIs to the left? In 
the test of Walbert and Petty (1985), it was found that COIs for the same tube 
mounted in different tanks varied by as much as 0.8 mil. Since the difference 
between our same-mount, five-tube COI and the fleet COI is only 0.3 mil, it 
seems plausible that the bias to the left could be mount related. 

Regardless of what bias the mount may impart, the change in COIs 
between the bow-left and bow-right centerlines were on the same order of 
magnitude as the LAT-based ammunition dispersion. This demonstrates that 

tube-to-tube variability, even for simple shapes, can be a significant 
contributor to tank-to-tank variation in shot impacts. The results also inferred 

that holding a tube shape relatively constant dramatically reduces impact 
dispersion, which would greatly increase hit probabilities at longer ranges. 

Thermal distortion of the barrel due to uneven firing heat input, vertically 
stratified cooling (e.g., thermal droop), or unidirectional solar heating, can 
cause a bow-like change in the bore centerline. If a muzzle reference system is 
used to correct for this type of distortion, it could degrade accuracy more than 
if no correction at all were made, since the change in jump was found here to 
be opposite in direction to the change in muzzle angle. 

In an attempt to understand why the COIs behaved as they did with the 
change in centerline, a gun dynamics model, Rascal, was utilized. Rascal 
computed the projectile's muzzle exit conditions, which, in the absence of 
knowing the sabot discard disturbance, were taken to be the conditions for the 

projectile's entrance into free flight. The aerodynamic jump as well as the 
Coriolis force effects were included in computing the total horizontal jump 
expected for each centerline configuration. However, the calculated jump 
differed in magnitude and direction from that observed. The differences were 
so extreme that even inclusion of sabot discard would probably not bring the 
predictions and measurements into satisfactory agreement. Clearly, a more 
comprehensive model and basic research is needed to understand why the COI 
depends on centerline curvature in the way that it does. 
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